Мультивибратор режимы. Подборка простых и эффективных схем. Радиосхемы начинающим радиолюбителям


Здравствуйте дорогие друзья и все читатели моего блога сайт. Сегодняшний пост будет о простом но интересном устройстве. Сегодня мы рассмотрим, изучим и соберем светодиодную мигалку, в основе которой лежит простой генератор прямоугольных импульсов — мультивибратор.

Заходя на свой бложик, мне всегда хочется сделать что-нибудь эдакое, что-то такое, что сделает сайт запоминающимся. Так что представляю вашему вниманию новую «секретную страницу» на блоге.

Эта страница отныне носит название — «Это интересно».

Вы наверное спросите: «Как же ее найти?» А очень просто!

Вы наверное заметили, что на блоге появился некий отслаивающийся уголок с надписью «Скорей сюда».

Причем стоит только подвести курсор мыши к этой надписи, как уголок начинает еще больше отслаиваться, обнажая надпись — ссылку «Это интересно».

Ведет на секретную страницу, где вас ждет небольшой, но приятный сюрприз — подготовленный мной подарок. Более того, в дальнейшем на этой странице будут размещаться полезные материалы, радиолюбительский софт и что-нибудь еще — пока еще не придумал. Так что, периодически заглядывайте за уголок — вдруг я что-то там припрятал.

Ладно, немножко отвлекся, теперь продолжим…

Вообще схем мультивибраторов существует много, но наиболее популярная и обсуждаемая это схема нестабильного симметричного мультивибратора. Обычно ее изображают таким образом.

Вот к примеру эту мультивибраторную мигалку я спаял гдето год назад из подручных деталек и как видите — мигает. Мигает несмотря на корявый монтаж, выполненный на макетной плате.

Эта схема рабочая и неприхотливая. Нужно лишь определиться как же она работает?

Принцип работы мультивибратора

Если собрать эту схемку на макетной плате и замерить напряжение мультиметром между эмиттером и коллектором, то что мы увидим? Мы увидим, что напряжение на транзисторе то поднимается почти до напряжения источника питания, то падает до нуля. Это говорит о том, что транзисторы в этой схеме работают в ключевом режиме. Замечу, что когда один транзистор открыт, второй обязательно закрыт.

Переключение транзисторов происходит следующим образом.

Когда один транзистор открыт, допустим VT1, происходит разрядка конденсатора C1. Конденсатор С2 — напротив спокойно заряжается базовым током через R4.

Конденсатор C1 в процессе разрядки держит базу транзистора VT2 под отрицательным напряжением — запирает его. Дальнейшая разрядка доводит конденсатор C1 до нуля и далее заряжает его в другую сторону.

Теперь напряжение на базе VT2 возрастает открывая его.Теперь уже конденсатор C2, некогда заряженный, подвергается разрядке. Транзистор VT1 оказывается запертым отрицательным напряжением на базе.

И вся эта свистопляска продолжается по в режиме нон стоп, пока питание не вырубишь.

Мультивибратор в своем исполнении

Сделав однажды мультивибраторную мигалку на макетке, мне захотелось ее немножко облагородить — сделать нормальную печатную плату для мультивибратора и заодно сделать платку для светодиодной индикации. Разрабатывал я их в программе Eagle CAD, которая не намного сложнее Sprintlayout но зато имеет жесткую привязку к схеме.

Печатная плата мультивибратора слева. Схема электрическая справа.

Печатная плата. Схема электрическая.

Рисунки печатной платы с помощью лазерного принтера я распечатал на фотобумаге. Затем в полном соответствии с народной вытравил платки. В итоге после напайки деталей получились вот такие платки.

Честно говоря, после полного монтажа и подключения питания случился небольшой баг. Набранный из светодиодов знак плюса не перемигивал. Он просто и ровно горел будто мультивибратора и нет вовсе.

Пришлось изрядно понервничать. Замена четырехконечного индикатора на два светодиода исправляло ситуацию, но стоило вернуть все на свои места — мигалка не мигала.

Оказалось, что два светодиодных плеча сомкнуты перемычкой, видимо когда залуживал платку немного переборщил с припоем. В итоге светодиодные «плечики» горели не по переменке а синхронно. Ну ничего, несколько движений паяльником исправили ситуацию.

Результат того, что получилось я запечатлел на видео:

По моему получилось не плохо. 🙂 Кстати оставляю ссылки на схемы и платы — пользуйтесь на здоровье.

Плата и схема мультивибратора.

Плата и схема индикатора «Плюс».

Вообще применение мультивибраторов разнообразно. Они годятся не только для простеньких светодиодных мигалок. Поигравшись с номиналами резисторов и конденсаторов, можно выводить на динамик сигналы звуковой частоты. Везде где может понадобиться простой генератор импульсов мультивибратор подойдет однозначно.

Вроде все что планировал я рассказал. Если чтото упустил то пишите в комментариях — добавлю что нужно, а что не нужно — исправлю. Комментариям я всегда рад!

Новые статьи я пишу спонтанно и не по расписанию и поэтому предлагаю подписаться на обновления по или по E-mail. Тогда новые статьи будут приходить прямо на ваш почтовый ящик или прямиком в RSS-ридер.

На этом у меня все. Желаю всем успехов и хорошего весеннего настроения!

С уважением, Владимир Васильев.

Также дорогие друзья вы можете подписаться на обновления сайта и получать новые материалы и подарки прямо себе в почтовый ящик. Для этого достаточно заполнить форму ниже.

Мультивибратор.

Первая схема - простейший мультивибратор. Не смотря не его простоту, область применения его очень широка. Ни одно электронное устройство не обходится без него.

На первом рисунке изображена его принципиальная схема.

В качестве нагрузки используются светодиоды. Когда мультивибратор работает - светодиоды переключаются.

Для сборки потребуется минимум деталей:

1. Резисторы 500 Ом - 2 штуки

2. Резисторы 10 кОм - 2 штуки

3. Конденсатор электролитический 47 мкФ на 16 вольт - 2 штуки

4. Транзистор КТ972А - 2 штуки

5. Светодиод - 2 штуки

Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода.

Когда вы приобретёте все детали, вооружайтесь паяльником и принимайтесь за сборку. Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажом. Спаивайте так, как показано на рисунках.

А уж как применить собранное устройство, пусть подскажет ваша фантазия! Например, вместо светодиодов можно поставить реле, а этим реле коммутировать более мощную нагрузку. Если изменить номиналы резисторов или конденсаторов – изменится частота переключения. Изменением частоты можно добиться очень интересных эффектов, от писка в динамике, до паузы на много секунд..

Фотореле.

А это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф. Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.

Работает это так: когда свет от светодиода попадает на фотодиод, транзистор откроется и начнёт светиться светодиод-2. Подстроечным резистором регулируется чувствительность устройства. В качестве фотодиода можно применить фотодиод от старой шариковой мышки. Светодиод - любой инфракрасный светодиод. Применение инфракрасного фотодиода и светодиода позволит избежать помех от видимого света. В качестве светодиода-2 подойдёт любой светодиод или цепочка из нескольких светодиодов. Можно применить и лампу накаливания. А если вместо светодиода поставить электромагнитное реле, то можно будет управлять мощными лампами накаливания, или какими-то механизмами.

На рисунках предоставлены обе схемы, цоколёвка(расположение ножек) транзистора и светодиода, а так же монтажная схема.

При отсутствии фотодиода, можно взять старый транзистор МП39 или МП42 и спилить у него корпус напротив коллектора, вот так:

Вместо фотодиода в схему надо будет включить p-n переход транзистора. Какой именно будет работать лучше – Вам предстоит определить экспериментально.

Усилитель мощности на микросхеме TDA1558Q.

Этот усилитель имеет выходную мощность 2 Х 22 ватта и достаточно прост для повторения начинающими радиолюбителями. Такая схема пригодится Вам для самодельных колонок, или для самодельного музыкального центра, который можно сделать из старого MP3 плеера.

Для его сборки понадобится всего пять деталей:

1. Микросхема - TDA1558Q

2. Конденсатор 0.22 мкФ

3. Конденсатор 0.33 мкФ – 2 штуки

4. Электролитический конденсатор 6800 мкФ на 16 вольт

Микросхема имеет довольно высокую выходную мощность и для её охлаждения понадобится радиатор. Можно применить радиатор от процессора.

Всю сборку можно произвести навесным монтажом без применения печатной платы. Сначала у микросхемы надо удалить выводы 4, 9 и 15. Они не используются. Отсчёт выводов идёт слева направо, если держать её выводами к себе и маркировкой вверх. Потом аккуратно распрямите выводы. Далее отогните выводы 5, 13 и 14 вверх, все эти выводы подключаются к плюсу питания. Следующим шагом отогните выводы 3, 7 и 11 вниз – это минус питания, или «земля». После этих манипуляций прикрутите микросхему к теплоотводу, используя теплопроводную пасту. На рисунках виден монтаж с разных ракурсов, но я всё же поясню. Выводы 1 и 2 спаиваются вместе – это вход правого канала, к ним надо припаять конденсатор 0.33 мкФ. Точно так же надо поступить с выводами 16 и 17. Общий провод для входа это минус питания или «земля».

Совершенство достигнуто не тогда, когда нечего добавить,
а тогда, когда нечего убрать.
Антуан де Сент–Экзюпери



Многие радиолюбители, конечно же, сталкивались с технологией поверхностного монтажа печатных плат SMT (Surface mount technology), встречали элементы SMD (Surface mount device), монтируемые на поверхность и слышали о преимуществах поверхностного монтажа, который по праву называют четвертой революцией в электронной технике после изобретения лампы, транзистора и интегральной схемы.

Некоторые считают поверхностный монтаж трудно реализуемым в домашних условиях в силу малых размеров SMD элементов и… отсутствия отверстий под выводы деталей.
Отчасти так оно и есть, но при внимательном рассмотрении выясняется, что малые размеры элементов требуют просто аккуратности при монтаже, конечно при условии, что разговор идет о простых SMD компонентах, не требующих для установки специального оборудования. Отсутствие опорных точек, коими являются отверстия под выводы деталей, лишь создают иллюзию трудности выполнения рисунка печатной платы.

Нужна практика в создании простых конструкций на SMD элементах, чтобы приобрести навыки, уверенность в своих силах, убедиться в перспективности поверхностного монтажа для себя лично. Ведь процесс изготовления печатной платы упрощается (не нужно сверлить отверстия, формовать выводы деталей), а получаемый выигрыш в плотности монтажа заметен невооруженным глазом.

Основой наших конструкций является схема несимметричного мультивибратора на транзисторах различной структуры.

Соберем «мигалку» на светодиоде, которая будет служить талисманом, а также создадим задел для будущих конструкций, изготовив прототип популярной у радиолюбителей, но не совсем доступной микросхемы .

Несимметричный мультивибратор на транзисторах разной структуры

(рис. 1) является настоящим «бестселлером» в радиолюбительской литературе .


Рис. 1. Схема несимметричного мультивибратора


Подключая в схему те или иные внешние цепи, можно собрать не один десяток конструкций. Например, звуковой пробник, генератор для изучения азбуки Морзе, прибор для отпугивания москитов, основа одноголосого музыкального инструмента. А применение внешних датчиков или устройств управления в цепи базы транзистора VT1 позволяет получить сторожевое устройство, индикатор влажности, освещённости, температуры и многие другие конструкции.

--
Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Список источников

1. Мосягин В.В. Секреты радиолюбительского мастерства. – М.: СОЛОН-Пресс. – 2005, 216 с. (с. 47 – 64).
2. Шустов М.А. Практическая схемотехника. 450 полезных схем радиолюбителям. Книга 1. – М.: Альтекс-А, 2001. – 352 с.
3. Шустов М.А. Практическая схемотехника. Контроль и защита источников питания. Книга 4. – М.: Альтекс-А, 2002. – 176 с.
4. Низковольтная «мигалка». (За рубежом) // Радио, 1998, №6, с. 64.
5.
6.
7.
8. Шумейкер Ч. Любительские схемы контроля и сигнализации на ИС. – М:.Мир, 1989 (схема 46. Простой индикатор разряда батареи, с. 104; схема 47. Маркер фалиня (мигающий), с. 105).
9. Генератор на LM3909 // Радиосхема, 2008, №2.Специальность по диплому - радиоинженер, к.т.н.

Автор книг «Юному радиолюбителю для прочтения с паяльником», «Секреты радиолюбительского мастерства», соавтор серии книг «Для прочтения с паяльником» в издательстве «СОЛОН-Пресс», имею публикации в журналах «Радио», «Приборы и техника эксперимента» и др.

Читательское голосование

Статью одобрили 66 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Мультивибратор на транзисторах – это генератор прямоугольных сигналов. Ниже на фото одна из осциллограмм симметричного мультивибратора.

Симметричный мультивибратор генерирует прямоугольные импульсы со скважностью два. Подробнее про скважность можно прочитать в статье генератор частоты . Принцип действия симметричного мультивибратора мы будем использовать для поочередного включения светодиодов.


Схема состоит из:

– двух КТ315Б (можно с любой другой буквой)

– двух конденсаторов емкостью по 10 микроФарад

– четырех , два по 300 Ом и два по 27 КилоОм

– двух китайских светодиодов на 3 Вольта


Вот так устройство выглядит на макетной плате :


А вот так он работает:

Для изменения длительности моргания светодиодов можно поменять значения конденсаторов С1 и С2, или резисторов R2 и R3.

Существуют также другие разновидности мультивибраторов. Подробнее о них можно прочитать . Также там описан принцип работы симметричного мультивибратора.

Кому лень собирать такое устройство, можно приобрести готовое;-) На Алике я даже находил готовое устройство. Его можете глянуть по этой ссылке.

Вот видео, где подробно описывается, как работает мультивибратор:

Для генерирования прямоугольных импульсов с частотой свыше можно использовать схемы, работающие по тому же принципу, что и схема на рис. 18.32. Как показано на рис. 18.40, в качестве компаратора в таких схемах используют простейший дифференциальный усилитель.

Положительная обратная связь в схеме триггера Шмитта обеспечивается непосредственным соединением выхода усилителя с его -входом, т. е. сопротивление резистора в делителе напряжения выбирают равным нулю. Согласно формуле (18.16), в такой схеме должен был получиться бесконечно большой период колебаний, однако это не совсем так. При выводе этого уравнения предполагалось, что усилитель, используемый в качестве компаратора, имеет бесконечно большой коэффициент усиления, т.е. что процесс переключения схемы происходит при разности входных напряжений, равной нулю. В этом случае порог переключения схемы будет равен выходному напряжению, и напряжение на конденсаторе С достигнет этой величины только за очень большое время.

Рис. 18.40 Мультивибратор на базе дифференциального усилителя.

Схема дифференциального усилителя, на базе которой выполнен генератор на рис. 18.40, имеет довольно низкий коэффициент усиления. По этой причине схема переключится еще до того, как разность входных сигналов усилителя станет равной нулю. Если, например, такую схему реализовать, как показано на рис. 18.41, на базе линейного усилителя, изготовленного по ЭСЛ-технологии (например, на базе интегральной микросхемы то разность входных сигналов, при которой происходит переключение схемы, составит около При амплитуде выходного напряжения около типичной для схем, выполненных на базе ЭСЛ-технологии, период импульсов генерируемого сигнала равен

Рассмотренная схема позволяет генерировать импульсное напряжение с частотой до

Аналогичный генератор может быть также выполнен на основе ТТЛ-схем. Для этих целей подходит готовая микросхема-триггер Шмитта (например, 7414 или 74132), так как она уже имеет внутреннюю положительную обратную связь. Соответствующее включение такой микросхемы показано на рис. 18.42. Так как через резистор триггера Шмитта должен протекать входной ток ТТЛ-элемента, то его сопротивление не должно превышать 470 Ом. Это необходимо для уверенного переключения схемы на нижнем пороге срабатывания. Минимальная величина этого сопротивления определяется выходной нагрузочной способностью логического элемента и равняется около 100 Ом. Пороги срабатывания триггера Шмитта составляют 0,8 и 1,6 В. Для амплитуды выходного сигнала около 3 В, типичного для ИС ТТЛ-типа, частота импульсов генерируемого сигнала равна

Максимально достижимое значение частоты составляет около 10 МГц.

Наиболее высокие частоты генерации достигаются при использовании специальных схем мультивибраторов с эмиттерными связями (например, микросхемы или Принципиальная схема такого мультивибратора представлена на рис. 18.43. Кроме того, указанные интегральные микросхемы снабжены дополнительными оконечными каскадами, выполненными на базе ТТЛ- или ЭСЛ-схем.

Рассмотрим принцип действия схемы. Допустим, что амплитуда переменных напряжений во всех точках схемы не превышает величины Когда транзистор закрыт, напряжение на его коллекторе практически равно напряжению питания. Напряжение на эмиттере транзистора составляет Ток эмиттера

Рис. 18.41. Мультивибратор на основе линейного усилителя, выполненного по ЭСЛ-технологии.

Рис. 18.42. Мультивибратор на основе триггера Шмитта, выполненного по ТТЛ-технологии. Частота

Рис. 18.43. Мультивибратор с эмиттерными связями.

транзистора равен Чтобы при этом на резисторе выделялся сигнал желаемой амплитуды, его сопротивление должно составлять Тогда в рассматриваемом состоянии схемы напряжение на эмиттере транзистора будет равно . В течение времени, когда транзистор закрыт, ток левого по схеме источника течет через конденсатор С. в результате чего напряжение на эмиттере транзистора снижается со скоростью

Транзистор Т открывается, когда напряжение на его эмиттере снижается до значения При этом напряжение на базе транзистора снижается на 0,5 В и транзистор закрывается, а напряжение на его коллекторе возрастает до величины За счет наличия эмиттерного повторителя на транзисторе с ростом напряжения на коллекторе транзистора увеличивается также и напряжение базы транзистора . Вследствие этого напряжение на эмиттере транзистора скачком увеличивается до значения Этот скачок напряжения через конденсатор С передается на эмиттер транзистора так что напряжение в этой точке скачком увеличивается от до

В течение времени, когда транзистор закрыт, ток протекающий через конденсатор С, вызывает снижение напряжения на эмиттере транзистора со скоростью

Транзистор остается закрытым до тех пор, пока потенциал его эмиттера не снизится от значения до значения Для транзистора это время составляет

Выбор редакции
Крольчатина – очень вкусное и полезное . Она отличается низким содержанием жиров, высокими диетическими качествами, сочетающимися с...

Оладьи – сытный завтрак для всей семьи, который можно приготовить необычно. Рецептов множество, как и начинок, которые добавляются в...

Тандури масала одна из самых распространенных индийских специй. В переводе с индийского масала означает «смесь специй». Тандури масала –...

Манты являются одним из самых популярных блюд у народов Центральной Азии, Пакистана и Турции, и не зря, ведь манты – это не только очень...
Решив взяться за собственную фигуру, мы нередко останавливаем свой выбор на низкокалорийных диетах... При этом нам приходится...
Чакры человека и их раскрытие - вопрос, который волнует магов и эзотериков уже не первое столетие. Узнайте, как можно открыть и почистить...
К чему снятся деньги? Сонники вещают абсолютно всем, кому приснились деньги в сновидении, немало славных событий. Однако нужно...
При подготовке к ЕГЭ по математике учащимся приходится систематизировать знания по алгебре и геометрии. Хочется объединить все известные...
Многие начинающие бизнесмены задумываются о том, какую форму налогообложения выбрать, что лучше для ИП: УСН или ЕНВД, чтобы и не платить...