Что такое нитраты в химии. Что такое нитраты и как от них защититься? Когда и что есть


Азотная кислота является сильной кислотой. Её соли - нитраты - получают действием HNO 3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.

Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

б)нитраты металлов, расположенных в ряду напряжений между магнием и медью:

в) нитраты металлов, расположенных в ряду напряжений правее ртути:

г) нитрат аммония:

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:

Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH 3:

Нитраты - широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

Жидкий азот применяется как хладагент и для криотерапии. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941 , как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при разливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.

Газообразным азотом заполняют камеры шин шасси летательных аппаратов.

31. Фосфор – получение, свойства, применение. Аллотропия. Фосфин, соли фосфония – получение и свойства. Фосфиды металлов, получение и свойства.

Фо́сфор - химический элемент 15-й группы третьего периода периодической системы Д. И. Менделеева; имеет атомный номер 15. Элемент входит в группу пниктогенов.

Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмомпри температуре около 1600 °С:



Образующиеся пары фосфора конденсируются в приёмнике под слоем воды в аллотропическую модификацию в виде белого фосфора. Вместо фосфоритов для получения элементарного фосфора можно восстанавливать углём и другие неорганические соединения фосфора, например, в том числе, метафосфорную кислоту:

Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность снижается. Белый фосфор в воздухе при окислении кислородом воздуха при комнатной температуре излучает видимый свет, свечение обусловлено фотоэмиссионной реакцией окисления фосфора.

Фосфор легко окисляется кислородом:

(с избытком кислорода)

(при медленном окислении или при недостатке кислорода)

Взаимодействует со многими простыми веществами - галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства: с металлами - окислитель, образует фосфиды; с неметаллами - восстановитель.

С водородом фосфор практически не соединяется.

В холодных концентрированных растворах щелочей также медленно протекает реакция диспропорционирования:

Сильные окислители превращают фосфор в фосфорную кислоту:

Реакция окисления фосфора происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

Наиболее активен химически, токсичен и горюч белый («жёлтый») фосфор, потому он очень часто применяется (в зажигательных бомбах и пр.).

Красный фосфор - основная модификация, производимая и потребляемая промышленностью. Он применяется в производстве спичек, взрывчатых веществ, зажигательных составов, различных типов топлива, а также противозадирных смазочных материалов, в качестве газопоглотителя в производстве ламп накаливания.



Элементарный фосфор при нормальных условиях существует в виде нескольких устойчивых аллотропических модификаций. Все возможные аллотропические модификации фосфора пока (2016 г.) до конца не изучены. Традиционно различают четыре его модификации: белый, красный, чёрный и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные описываемые модификации являются смесью этих четырёх. При стандартных условиях устойчивы только три аллотропических модификации фосфора (например, белый фосфор термодинамически неустойчив (квазистационарное состояние) и переходит со временем при нормальных условиях в красный фосфор). В условиях сверхвысоких давлений термодинамически устойчива металлическая форма элемента. Все модификации различаются по цвету, плотности и другим физическим и химическим характеристикам, особо, по химической активности. При переходе состояния вещества в более термодинамически устойчивую модификацию снижается химическая активность, например, при последовательном превращении белого фосфора в красный, потом красного в чёрный (металлический).

Фосфи́н (фосфористый водород , фосфид водорода , гидрид фосфора , фосфан РН 3) - бесцветный, ядовитый газ (при нормальных условиях) со специфическим запахом гнилой рыбы.

Фосфин получают при взаимодействии белого фосфора с горячей щёлочью, например:

Также его можно получить воздействием воды или кислот на фосфиды:

Хлористый водород при нагревании взаимодействует с белым фосфором:

Разложение йодида фосфония:

Разложение фосфоновой кислоты:

или её восстановление:

Химические свойства.

Фосфин сильно отличается от своего аналога, аммиака. Его химическая активность выше, чем у аммиака, он плохо растворим в воде, как основание значительно слабее аммиака. Последнее объясняется тем, что связи H−P поляризованы слабо и активность неподелённой пары электронов у фосфора (3s 2) ниже, чем у азота (2s 2) в аммиаке.

В отсутствие кислорода при нагревании разлагается на элементы:

на воздухе самопроизвольно воспламеняется (в присутствии паров дифосфина или при температуре свыше 100 °C):

Проявляет сильные восстановительные свойства:

При взаимодействии с сильными донорами протонов фосфин может давать соли фосфония, содержащие ион PH 4 + (аналогично аммонию). Соли фосфония, бесцветные кристаллические вещества, крайне неустойчивы, легко гидролизуется.

Соли фосфония, как и сам фосфин, являются сильными восстановителями.

Фосфи́ды - бинарные соединения фосфора с другими менее электроотрицательными химическими элементами, в которых фосфор проявляет отрицательную степень окисления.

Большинство фосфидов представляют собой соединения фосфора с типичными металлами, которые получаются прямым взаимодействием простых веществ:

Na + P (красн.) → Na 3 P + Na 2 P 5 (200 °C)

Фосфид бора можно получить как прямым взаимодействием веществ при температуре около 1000 °C, так и реакцией трихлорида бора с фосфидом алюминия:

BCl 3 + AlP → BP + AlCl 3 (950 °C)

Фосфиды металлов - неустойчивые соединения, которые разлагаются водой и разбавленными кислотами. При этом получается фосфин и, в случае гидролиза, - гидроксид металла, в случае взаимодействия с кислотами - соли.

Ca 3 P 2 + 6H 2 O → 3Ca(OH) 2 + 2PH 3

Ca 3 P 2 + 6HCl → 3CaCl 2 + 2PH 3

При умеренном нагревании большинство фосфидов разлагаются. Плавятся под избыточным давлением паров фосфора.

Фосфид бора BP, наоборот, тугоплавкое (t пл. 2000 °C, с разложением), весьма инертное вещество. Разлагается только концентрированными кислотами-окислителями, реагирует при нагревании с кислородом, серой, щелочами при спекании.

32. Оксиды фосфора – строение молекул, получение, свойства, применение.

Фосфор образует несколько оксидов. Важнейшими из них являются оксид фосфора (V) P 4 O 10 и оксид фосфора (III) P 4 O 6 . Часто их формулы пишут в упрощённом виде - P 2 O 5 и P 2 O 3 . В структуре этих оксидов сохраняется тетраэдрическое расположение атомов фосфора.

Оксид фосфора (III) P 4 O 6 - воскообразная кристаллическая масса, плавящаяся при 22,5°С и превращающаяся при этом в бесцветную жидкость. Ядовит.

При растворении в холодной воде образует фосфористую кислоту:

P 4 O 6 + 6H 2 O = 4H 3 PO 3 ,

а при реакции со щелочами - соответствующие соли (фосфиты).

Сильный восстановитель. При взаимодействии с кислородом окисляется до Р 4 О 10 .

Оксид фосфора (III) получается окислением белого фосфора при недостатке кислорода.

Оксид фосфора (V) P 4 O 10 - белый кристаллический порошок. Температура возгонки 36°С. Имеет несколько модификаций, одна из которых (так называемая летучая) имеет состав Р 4 О 10 . Кристаллическая решётка этой модификации слагается из молекул Р 4 О 10 , связанных между собой слабыми межмолекулярными силами, легко разрывающимися при нагревании. Отсюда и летучесть этой разновидности. Другие модификации полимерны. Они образованы бесконечными слоями тетраэдров РО 4 .

При взаимодействии Р 4 О 10 с водой образуется фосфорная кислота:

P 4 O 10 + 6H 2 O = 4H 3 PO 4 .

Будучи кислотным оксидом, Р 4 О 10 вступает в реакции с основными оксидами и гидроксидами.

Образуется при высокотемпературном окислении фосфора в избытке кислорода (сухого воздуха).

Благодаря исключительной гигроскопичности оксид фосфора (V) используется в лабораторной и промышленной технике в качестве осушающего и дегидратируюшего средства. По своему осушающему действию он превосходит все остальные вещества. От безводной хлорной кислоты отнимает химически связанную воду с образованием её ангидрида:

4HClO 4 + P 4 O 10 = (HPO 3) 4 + 2Cl 2 O 7 .

P 4 O 10 применяют как осушитель газов и жидкостей.

Широко используется в органическом синтезе в реакциях дегидратации и конденсации.

Которые мы с вами поглощаем с овощами и фруктами, – это соли азотной кислоты. Попросту – селитра, как называли ее прежде. Зачем фермеру заморачиваться коровьим или конским навозом (этого добра, кстати, сейчас днем с огнем не найдешь), если можно щедро добавить неорганические удобрения для пышного роста ? Не приходилось ли вам при чистке картофеля видеть черные пятна на разрезе? Вот, скорее всего, он был удобрен нитратными удобрениями. Ну, и как же при всем при этом вести ? Ведь здоровье в первую очередь зависит от того, что мы едим. А едим мы зачастую овощи, напичканные нитратами. Я не химик, я упрощаю, но проблема актуальная.

Присутствие в растениях нитратов – явление нормальное, если оно находится в пределах нормы. А вот при избытке нитратов овощи могут быть весьма даже токсичными.

Как нитраты попадают в организм человека

Большая часть нитратов попадает в организм с консервированными или свежими овощами (примерно 50% суточной нормы);

Очень небольшое количество - с молоком и хлебо-булочными изделиями;

Небольшая часть - в свежем мясе и рыбе, но их количество резко возрастает при добавке нитратов с целью длительного хранения;

Через питьевую воду. Нитраты с полей попадают в подземные воды, а затем- в водозаборные системы.

Чем опасны нитраты

Нитраты способствуют образованию в крови метгемоглобина, который не способен доставлять кислород к органам и тканям, в результате возможно удушье. Нарушается работа печени, понижается давление. Опасным считается предел, когда уровень метгемоглобина в крови превышает 20 процентов. Особенно вредны нитраты детям раннего возраста, так как у них еще не сформировалась ферментативная система.

Как бороться с нитратами

Накопление нитратов зависит не только от внесения минеральных удобрений. Их количество зависит также от самого овоща, где он произрастал - в теплице или в открытом грунте, в тени или на солнце. Количество нитратов различно в разных частях растения.

Некоторые практические советы

Предварительное мытье и очистка уменьшают количество нитратов в овощах на 10 процентов;

Больше всего содержится нитратов в их кожуре, поэтому в некоторых случаях не лишним будет ее очистить;

В спелых плодах нитратов меньше, чем в зеленых;
- в листьях сельдерея, петрушки и укропа их в 2 раза меньше, чем в стеблях;

В листьях белокочанной капусты 2/3 нитратов находятся в кочерыжке;

В поверхностной части моркови их на 70 процентов меньше, чем в ее сердцевине;

В редисе и огурцах в кожурe на 60 процентов больше нитратов, чем во внутренней части (огурцы лучше очистить);
- у арбуза и дыни не нужно есть зеленую мякоть, прилежащую к корке;

Салаты ешьте только свежеприготовленные. Даже непрoдолжительное их хранение в холодильнике способствует превращению нитратов в более опасные нитриты;

Употребление зеленого чая нейтрализует нитраты, поступившие в организм.

Пользуясь этими советами, вы, безусловно, снизите количество нитратов. Но не нужно стараться избавиться от них вовсе. Это невозможно, даже вредно. Так как одновременно уничтожаются и витамины, в том числе витамин С.

Осторожно! Ранние арбузы! ВИДЕО

Оставьте комментарий

Что такое нитриты и нитраты

В Большой Советской Энциклопедии (БЭС) читаем: «Нитриты — соли и эфиры азотистой кислоты HNO2». Нитриты используются в резинотехнической, текстильной, металлообрабатывающей промышленностях. Нитрит натрия (мы писали про него ) – популярный консервант в мясных продуктах.

А что такое нитраты? Это «соли и эфиры азотной кислоты HNO3». Казалось бы, разница небольшая, но все же это два разных химических соединения – одно переходит в другое в результате химических реакций в рамках азотного цикла в биосфере. Как именно это происходит, для нас не так уж важно.

Откуда берутся нитриты и нитраты и для чего они нужны?

Азот – это хорошо и важно, даже жизненно необходимо. Азотистые соединения – это строительный материал аминокислот, из которых состоят белки, из которых, в свою очередь, состоит значительная часть нашего организма. Азот и фосфор – основные минеральные вещества, которыми питаются растения, недаром именно про азотистые и фосфорные удобрения мы слышим больше всего. Без азота не было бы жизни на земле, какой мы ее знаем.

С другой стороны, азотный цикл в биосфере – это четко отлаженная устоявшаяся система, имеющая свои постоянные величины и «дозировки» азота в разных соединениях в разных местах. Внося гигантские количества азотных удобрений на поля в рамках модели традиционного сельского хозяйства, человек добивается рекордных урожаев из красивых, ровных и крупных плодов, но вместе с тем нарушает отлаженный природой механизм азотного цикла, вредя природе и самому себе.

Внесение большого количества азота ведет к вымыванию его с полей в озера, реки, оттуда в моря и океаны. Это ведет к процессу эвтрофикации, т.к. фосфор и азот – основные питательные вещества фитопланктона, т.е. мельчайших растений, которыми, в свою очередь, питается зоопланктон.

Вся эта масса накапливается на поверхности водоема, начинается бурное цветение водорослей, солнечный свет больше не попадает на дно водоема, придонные растения больше не могут фотосинтезировать, кислорода в воде не хватает, как следствие – погибает рыба и животные. Водоем вымирает, вокруг мрак и тлен.

Но вернемся к нитритам и нитратам…

Как нитраты попадают в человеческий организм?

Во-первых, через продукты питания, причем через растительную пищу в гораздо большей мере, чем через животную. Овощи, растущие в земле, получают больше дозы нитратных и аммонийных удобрений, чем корова, пасущаяся на лугу.

Со скотом, конечно, отдельный вопрос, потому что они получают массу всего другого в зависимости от того, чем их кормят и колют, но это отдельная тема. Так вот, все, что растет в земле, которую удобряют химическими азотистыми удобрениями, получает массу нитратов. Человек, съедая овощ, фрукт или зелень, выращенные в традиционном сельском хозяйстве, почти со 100% вероятностью получает дозу нитратов.

Во-вторых, нитриты и нитраты попадают в организм человека с питьевой водой – этим вечным источником веществ, про который многие забывают. Все, что в рамках с/х выливается на поля, попадает со стоком не только в реки и моря, но часто и в подземные воды.

Структура подземных вод сложна и отличается в зависимости от рельефа местности, глубины залегания и типа почв – в некоторых случаях подземные воды хорошо изолированы глинистыми слоями почвы, и никакие вещества с поверхности в них не проникают.

Как правило, это артезианская вода – она одна из самых чистых. В других случаях, однако, в подземные воды попадают те самые азотистые удобрения, причем не только с полей, но и непосредственно с производящих такие удобрения предприятий, если у последних стоят плохие системы очистки водных сбросов и атмосферных выбросов. Результат – повышенный уровень нитратов и нитритов в воде в близлежащей местности.

Тут мы опять скажем спасибо Мосводоканалу за его сайт и в той воде, что течет из-под крана в вашем районе Москвы. Например, в районе Проспект Вернадского, где живет автор этих строк, с водой все хорошо: уровень нитритов у нас менее 0,5 мг/дл3 (при норме не более 3), а уровень нитратов – 3,3 мг/дл3 (при норме не более 45).

Источниками попадания нитратов и нитритов в человеческий организм может стать и табак, и лекарства, и животная пища – например, в мясных и колбасных изделиях нитрит натрия используется в качестве консерванта.

Наш главный редактор Татьяна Лебедева как раз недавно писала о том, а вот здесь мы (пока только говядину), которое тоже не содержит этих веществ по умолчанию. Почитайте на досуге, если едите мясо.

Чем опасны нитриты и нитраты

«При неправильном использовании нитратов в качестве удобрений они накапливаются в сельскохозяйственных продуктах в чрезмерных количествах, что может привести к отравлению людей и животных», — написано в БЭС.

В человеческом организме конкретно нитраты не задерживаются — под действием ферментов они преобразуются в нитриты и образуют нитрозил-ионы. Основная опасность заключается в том, что нитрозил-ионы воздействуют на гемоглобин, ответственный за перенос кислорода в крови по всему организму.

Гемоглобин превращается в метгемоглобин, а превышение в крови концентрации метгемоглобина даже в 1% ведет к метгемоглобинемии – явлении, при котором кровь плохо или вообще не переносит кислород от легких к тканям организма. Чем грозит подобная дисфункция крови, думаю, объяснять не требуется.

Нитриты особенно опасны для грудных детей, у которых выработка ферментов еще не устоялась, организм в целом слабый, репродукция гемоглобина идет медленно, что дает большую уязвимость. Поэтому предельно допустимая суточная доза нитратов, установленная в РФ для взрослых – 0,2 мг/кг массы тела – для детей не применима. Кстати, в ЕС эта цифра вдвое меньше – 0,1 мг/кг массы тела.

Как избегать нитритов и нитратов

Как избегать овощей и фруктов? Никак. Но полезно знать, что нитраты в основном скапливаются в корнях, корнеплодах, стеблях, черешках и крупных жилках листьев, значительно меньше их в плодах – это хорошие новости, ведь именно плоды нас и интересуют (правда, корнеплоды составляют значительную часть нашего рациона, но тут уж ничего не поделаешь).

Нитратов также больше в зеленых плодах, чем в спелых – и это тоже хорошо. Из разных сельско-хозяйственных растений больше всего нитратов содержится в салате (особенно в тепличном), в редьке, петрушке, редисе, столовой свёкле, капусте, моркови и укропе.

Так что эти продукты по возможности надо покупать у тех поставщиков, в которых вы уверены, растить их самим на даче с использованием только натуральных (в идеале — самодельных) удобрений из трав, навоза, компоста или покупать в органическом качестве.

Не курите, не ешьте мясные продукты с нитритом натрия. Следите за водой. Если вы выяснили, что в вашем районе вода не отличается чистотой, озаботьтесь вопросом фильтра. Если у вас есть дачный участок и вы не в курсе качества воды там, скиньтесь всем кооперативом и закажите лабораторные анализы воды из вашего колодца, скважины, пруда или откуда вы там получаете свою воду. Будьте активны и неравнодушны – здоровье любит, чтобы о нем думали и заботились, тогда оно не будет о себе напоминать.

Нитраты - это соли и эфиры азотной кислоты HNO 3 . Соли - кристаллы; удобрения, протравы при крашении, компоненты взрывчатых веществ. Нитраты аммония, щелочных и щёлочноземельных металлов часто называют селитрами. При неправильном использовании нитратов в качестве удобрений они накапливаются в сельскохозяйственных продуктах в чрезмерных количествах, что может привести к отравлению людей и животных. Эфиры - бесцветные или светло-жёлтые, приятно пахнущие жидкости; эфиры, содержащие несколько групп ONO 2 , например, нитроглицерин, применяются в качестве взрывчатых веществ и лекарственных препаратов.

1.3 Нахождение нитратов в природе, их место в круговороте азота.

Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру, образующую мощные пласты на побережье Тихого океана и Чили. Почва содержит незначительное количество азота, преимущественно в виде солей азотной кислоты. Природные нитраты встречаются в виде солеобразных масс, выцветов, корочек, налетов. Все селитры хорошо растворяются в воде, обладают охлаждающим вкусом. Значительные месторождения находятся в Чили (провинция Тарапка и Антофагаста), где природные нитраты ассоциируют с галогенидами, сульфатами, селенатами и некоторыми иодатами. В этих месторождениях калийная и натриевая селитры составляют основную часть запасов. Щелочные нитраты часто формируются при взаимодействии азотистых органических веществ и щелочных солей. Например, налеты натриевой и калиевой селитры в полостях и трещинах пород или высыпки. На современном этапе природные нитраты добываются в ограниченном количестве; главную массу азотных соединений получают химическим путем.

Круговорот азота - биогеохимический циклазота. Большая его часть обусловлена действием живых существ. Очень большую роль в круговороте играют почвенные микроорганизмы, обеспечивающиеазотистый обмен почвы - круговорот в почве азота, который присутствует там в виде простого вещества (газа - N 2) и ионов: нитритов(NO 2 -), нитратов(NO 3 -) и аммония(NH 4 +). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние атмосферы, вымывание из почвы различных веществ. Они способны снижать концентрации азотсодержащих веществ, губительные для других живых организмов. Они могут переводить токсичный для живых существаммиакв менее токсичные нитраты и в биологически инертный атмосферный азот. Таким образом, микрофлора почвы способствует поддержанию стабильности её химических показателей.

Азотфиксация

Запасы азота в природе очень велики. Общее содержание этого элемента в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. В воздухе азот присутствует в виде газа N 2 . Однако газ азот (N 2), содержание которого в атмосфере достигает 78 % по объёму, эукариотысами по себе ассимилировать не могут. А уникальной способностью превращать N 2 в азотсодержащие соединения обладают некоторые бактерии, которые называют азотфиксирующими, или азотфиксаторами. Фиксация азота возможна многими бактериями и цианобактериями. Они живут или в почве, или всимбиозес растениями, или с несколькими разновидностями животных. Например, семьябобовых растений(Fabaceae) содержит такие бактерии на своихкорнях. Типичным представителем свободноживущих азотфиксирующих микроорганизмов являетсяAzotobacter- грамотрицательная бактерия, связывающая азот воздуха. Продукты фиксации азота -аммиак(NH 3 ), нитриты.

Нитрификация

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов. Этот процесс носит название нитрификации, он осуществляется нитрифицирующими бактериями. Однако нет такой бактерии, которая бы прямо превращала аммиак в нитрат. В его окислении всегда участвуют две группы бактерий: одни окисляют аммиак, образуя нитрит, а другие окисляют нитрит в нитрат. Наиболее известные виды нитрифицирующих бактерий - это Nitrosomonas и Nitrobacter. Nitrosomonas окисляет аммиак:

NH 3 + 1½ O 2 = (NO 2 - ) + 2H + + H 2 O

Nitrobacterокисляютнитрит:

(NO 2 -) + ½ O 2 = NO 3 -

Бактерии, окисляющие аммиак, поставляют субстрат для бактерий, окисляющих нитрит. Поскольку высокие концентрации аммиака оказывают на Nitrobacter токсическое действие, Nitrosomonas, используя аммиак и образуя кислоту, тем самым улучшает и условия существования для Nitrobacter.

Нитрификаторы - грамотрицательные бактерии, принадлежащие к семейству Nitrobacteracea. Им не нужны восстановленные соединения углерода для нормального роста и размножения, они способны восстанавливать CO 2 до органических соединений, используя для этого энергию окисления минеральных соединений азота - аммиака и нитритов. То есть нитрификаторы - бактерии, которые способны питаться исключительно неорганическими соединениями и осуществляют процесс хемосинтеза, синтеза органических соединений из минеральных. Хемосинтез - путь усвоения живыми существами неорганического углерода, альтернативный фотосинтезу. Растения используют нитраты для образования разных органических веществ. Животные потребляют с пищей растительные белки, аминокислоты и др. азотсодержащие вещества. Таким образом, растения делают органический азот доступным для других организмов - консументов.

Все живые организмы поставляют азот в окружающую среду. С одной стороны, все они выделяют в ходе жизнедеятельности продукты азотистого обмена: аммиак, мочевину и мочевую кислоту. Последние два соединения разлагаются в почве с образованием аммиака (который при растворении в воде даёт ионы аммония).

Аммонификация

Мочевая кислота, выделяемая птицами и рептилиями, также быстро минерализуется особыми группами микроорганизмов с образованием NH 3 и СО 2 . С другой стороны, азот, включённый в состав живых существ, после их гибели подвергается аммонификации (разложение содержащих азот сложных соединений с выделением аммиака и ионов аммония(NH 4 +)) и нитрификации.

Денитрификация

Продукты нитрификации - NO 3 - и NO 2 - в дальнейшем подвергаются денитрификации. Этот процесс целиком происходят благодаря деятельности денитрифицирующих бактерий, которые обладают способностью восстанавливать нитрат через нитрит до газообразной закиси азота (N 2 O) и азота (N 2). Эти газы свободно переходят в атмосферу.

10 [ H ] + 2 H + +2NO 3 - = N 2 + 6 H 2 O

В отсутствие кислорода нитрат служит конечным акцептором водорода. Способность получать энергию путем использования нитрата как конечного акцептора водорода с образованием молекулы азота широко распространена у бактерий. Временные потери азота на ограниченных участках почвы, несомненно, связаны с деятельностью денитрифицирующих бактерий. Таким образом, круговорот азота невозможен без участия почвенной микрофлоры.

Ассимиляция

Усваиваемые соединения азота могут накапливаться в почве в неорганической форме (нитрат) или могут быть включены в живой организм как органический азот. Ассимиляция и минерализация определяет поглощение соединений азота из почвы, объединение их вбиомолекулырастений и конверсию в неорганический азот после отмирания растений, соответственно. Ассимиляция - переход неорганического азота (типа нитрата) в органическую форму азота как, например,аминокислоты. Нитрат переходит с помощьюферментовсначала в нитрит (редуктаза нитрата), затем в аммиак (редуктаза нитрита). Аммиак входит в состав аминокислот.

Факторы, влияющие на круговорот азота в антропогенных биоценозах

В отсутствие деятельности человека процессы связывания азота и нитрификациипрактически полностью уравновешены противоположными реакциямиденитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство. Но в настоящее время на круговорот азота влияют много факторов, вызванных человеком. Во-первых, этокислотные дожди- явление, при котором наблюдается понижениеpHдождевых осадков и снега из-за загрязнений воздухакислотными оксидами(например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 - изкислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:

N 2 + O 2 = 2NO - Q

Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете. Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:

2NO 2 + H 2 O = HNO 3 + HNO 2

образуются азотная и азотистая кислоты. В капельках атмосферной воды эти кислоты диссоциируют с образованием, соответственнонитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву. Вторая группа антропогенных факторов, влияющих на азотистый обмен почв, - это технологические выбросы.Оксиды азота- одни из самых распространенных загрязнителей воздуха. А неуклонный рост производства аммиака,сернойиазотной кислотынапрямую связан с увеличением объёма отходящих газов, а следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Третья группа факторов - переудобрение почв нитритами, нитратами (селитрой) и органическими удобрениями. И наконец, на азотистый обмен почв отрицательно влияет повышенный уровень биологического загрязнения. Возможные его причины: сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.). Как следствие почва загрязняется аммиаком, солями аммония,мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактериями в нитраты.

Нитриты и нитраты отличаются не только по названию, в своей формуле они имеют и разные элементы. Однако есть и то, что их «роднит». Область применения этих веществ достаточно широка. В организме человека они тоже присутствуют, причем, если их скапливается слишком много, человек получает сильное отравление, которое может привести даже к летальному исходу.

Что такое нитраты

Проще говоря, нитраты - это соли азотной кислоты. В своей формуле они содержат одноразрядный анион. Раньше нитрат именовали . Теперь так называют минералы, а также удобрения, применяемые в сельском хозяйстве.

Нитраты получаются при помощи азотной кислоты, которая воздействует на металлы, оксиды, соли и гидроксиды. Все нитраты можно развести в воде. В твердом состоянии они являются сильными окислителями, но их свойства пропадают, если в раствор добавить азотной кислоты.

Нитраты сохраняют свои свойства при обычной температуре, но при низкой температуре плавятся, причем до самого полного разложения. Процесс получения этих веществ очень сложный, поэтому будет интересен, пожалуй, только химикам.

Нитраты являются основой для взрывчатых веществ - это аммониты и иные вещества. Применяются они в основном и в качестве минеральных удобрений. Сейчас уже не существует секрета в том, что растения используют азот из соли для построения клеток своего организма. Растение создает хлорофилл, которым и живет. Но в организме людей, нитраты становятся нитритами, которые способны свести человека в могилу.

Нитриты – тоже соли

Нитриты тоже являются солями азотной кислоты, но с другой формулой в своем химическим составе. Известны натрия, нитриты кальция. Известны также нитриты свинца, серебра, щелочных, щелочноземельных, 3D-металлов.

Это кристаллические вещества, которые присущи также калию или барию. Одни вещества хорошо растворяются в воде, другие, такие как нитриты серебра, ртути или меди, плохо растворяются в ней. Примечательно, что в органических растворителях нитриты тоже практически не растворяются. Но если повысить температуру, растворимость нитритов улучшается.

Человечество использует нитриты при получении азотных красителей, для получения капролактама, а также как окисляющие и восстанавливающие реагенты в резинотехнической, текстильной и металлообрабатывающей промышленности. Например, нитрит натрия является хорошим консервантом, применяется при производстве бетонных смесей в качестве ускорителя твердения и противоморозной добавки.

Нитриты являются ядом для гемоглобина человека, поэтому их нужно ежедневно выводить из организма. Они попадают в человеческий организм или прямым путем или с какими-либо другими веществами. Если человеческий организм функционирует нормально, необходимое количество вещества остается, а ненужное – удаляется. А вот если человек болен, появляется проблема с отравлением нитритами.

Выбор редакции
Традиционно в конце года решаются вопросы, связанные индексацией государственных пособий и выплат. Будет ли индексироваться материнский...

Многие люди, представляя пирог, думают о нем как об очень калорийной выпечке, которая способствует набору лишнего веса. Конечно, часто...

Способ изготовления теста для бисквитов с добавлением лимонада относительно новый и довольно удобный. Не смотря на лёгкость...

Крольчатина – очень вкусное и полезное . Она отличается низким содержанием жиров, высокими диетическими качествами, сочетающимися с...
Оладьи – сытный завтрак для всей семьи, который можно приготовить необычно. Рецептов множество, как и начинок, которые добавляются в...
Тандури масала одна из самых распространенных индийских специй. В переводе с индийского масала означает «смесь специй». Тандури масала –...
Манты являются одним из самых популярных блюд у народов Центральной Азии, Пакистана и Турции, и не зря, ведь манты – это не только очень...
Решив взяться за собственную фигуру, мы нередко останавливаем свой выбор на низкокалорийных диетах... При этом нам приходится...
Чакры человека и их раскрытие - вопрос, который волнует магов и эзотериков уже не первое столетие. Узнайте, как можно открыть и почистить...